Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(3): 231368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38545612

RESUMO

Killer whales (Orcinus orca) are currently recognized as a single ecologically and morphologically diverse, globally distributed species. Multiple morphotypes or ecotypes have been described, often associated with feeding specialization, and several studies have suggested taxonomic revision to include multiple subspecies or species in the genus. We review the ecological, morphological and genetic data for the well-studied 'resident' and Bigg's (aka 'transient') ecotypes in the eastern North Pacific and use quantitative taxonomic guidelines and standards to determine whether the taxonomic status of these killer whale ecotypes should be revised. Our review and new analyses indicate that species-level status is justified in both cases, and we conclude that eastern North Pacific Bigg's killer whales should be recognized as Orcinus rectipinnus (Cope in Scammon, 1869) and resident killer whales should be recognized as Orcinus ater (Cope in Scammon, 1869).

2.
BMC Genomics ; 24(1): 693, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985969

RESUMO

BACKGROUND: Reference genomes provide a foundational framework for evolutionary investigations, ecological analysis, and conservation science, yet uncertainties in the assembly of reference genomes are difficult to assess, and by extension rarely quantified. Reference genomes for monodontid cetaceans span a wide spectrum of data types and analytical approaches, providing the context to derive broader insights related to discrepancies and regions of uncertainty in reference genome assembly. We generated three beluga (Delphinapterus leucas) and one narwhal (Monodon monoceros) reference genomes and contrasted these with published chromosomal scale assemblies for each species to quantify discrepancies associated with genome assemblies. RESULTS: The new reference genomes achieved chromosomal scale assembly using a combination of PacBio long reads, Illumina short reads, and Hi-C scaffolding data. For beluga, we identified discrepancies in the order and orientation of contigs in 2.2-3.7% of the total genome depending on the pairwise comparison of references. In addition, unsupported higher order scaffolding was identified in published reference genomes. In contrast, we estimated 8.2% of the compared narwhal genomes featured discrepancies, with inversions being notably abundant (5.3%). Discrepancies were linked to repetitive elements in both species. CONCLUSIONS: We provide several new reference genomes for beluga (Delphinapterus leucas), while highlighting potential avenues for improvements. In particular, additional layers of data providing information on ultra-long genomic distances are needed to resolve persistent errors in reference genome construction. The comparative analyses of monodontid reference genomes suggested that the three new reference genomes for beluga are more accurate compared to the currently published reference genome, but that the new narwhal genome is less accurate than one published. We also present a conceptual summary for improving the accuracy of reference genomes with relevance to end-user needs and how they relate to levels of assembly quality and uncertainty.


Assuntos
Beluga , Animais , Análise de Sequência de DNA , Incerteza , Genômica , Genoma
3.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37901938

RESUMO

The secondary adaptation of Cetacea to a fully marine lifestyle raises the question of their ability to maintain their water balance in a hyperosmotic environment. Cetacea have access to four potential sources of water: surrounding salt oceanic water, dietary free water, metabolic water and inhaled water vapour to a lesser degree. Here, we measured the 18O/16O oxygen isotope ratio of blood plasma from 13 specimens belonging to two species of Cetacea raised under human care (four killer whales Orcinus orca, nine common bottlenose dolphins Tursiops truncatus) to investigate and quantify the contribution of preformed water (dietary free water, surrounding salt oceanic water) and metabolic water to Cetacea body water using a box-modelling approach. The oxygen isotope composition of Cetacea blood plasma indicates that dietary free water and metabolic water contribute to more than 90% of the total water input in weight for cetaceans, with the remaining 10% consisting of inhaled water vapour and surrounding water accidentally ingested or absorbed through the skin. Moreover, the contribution of metabolic water appears to be more important in organisms with a more lipid-rich diet. Beyond these physiological and conservation biology implications, this study opens up questions that need to be addressed, such as the applicability of the oxygen isotope composition of cetacean body fluids and skeletal elements as an environmental proxy of the oxygen isotope composition of present and past marine waters.


Assuntos
Golfinho Nariz-de-Garrafa , Orca , Animais , Humanos , Isótopos de Oxigênio , Vapor , Cetáceos/fisiologia
4.
Animals (Basel) ; 13(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37684971

RESUMO

Numerous studies have demonstrated the negative effects of impoverished environments versus the positive effects of enriched environments on animals' cognitive and neural functioning. Recently, a hypothesis was raised suggesting that conditions for dolphins in zoological facilities may be inherently impoverished, and thus lead to neural and cognitive deficits. This review directly examines that hypothesis in light of the existing scientific literature relevant to dolphin welfare in zoological facilities. Specifically, it examines how dolphins are housed in modern zoological facilities, where the characteristics of such housing fall on the continuum of impoverished-to-enriched environments, and the extent to which dolphins show behavioral evidence characteristic of living in impoverished environments. The results of this analysis show that contrary to the original hypothesis, modern zoological facilities do not inherently, or even typically, house dolphins in impoverished conditions. However, it also notes that there is variation in animal welfare across different zoological facilities, and that "not impoverished" would be a particularly low bar to set as an animal welfare standard. To optimize cognitive well-being, strategies for providing additional cognitive challenges for dolphins in zoological facilities are suggested.

5.
PeerJ ; 11: e15576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377790

RESUMO

Odontocetes first appeared in the fossil record by the early Oligocene, and their early evolutionary history can provide clues as to how some of their unique adaptations, such as echolocation, evolved. Here, three new specimens from the early to late Oligocene Pysht Formation are described further increasing our understanding of the richness and diversity of early odontocetes, particularly for the North Pacific. Phylogenetic analysis shows that the new specimens are part of a more inclusive, redefined Simocetidae, which now includes Simocetus rayi, Olympicetus sp. 1, Olympicetus avitus, O. thalassodon sp. nov., and a large unnamed taxon (Simocetidae gen. et sp. A), all part of a North Pacific clade that represents one of the earliest diverging groups of odontocetes. Amongst these, Olympicetus thalassodon sp. nov. represents one of the best known simocetids, offering new information on the cranial and dental morphology of early odontocetes. Furthermore, the inclusion of CCNHM 1000, here considered to represent a neonate of Olympicetus sp., as part of the Simocetidae, suggests that members of this group may not have had the capability of ultrasonic hearing, at least during their early ontogenetic stages. Based on the new specimens, the dentition of simocetids is interpreted as being plesiomorphic, with a tooth count more akin to that of basilosaurids and early toothed mysticetes, while other features of the skull and hyoid suggest various forms of prey acquisition, including raptorial or combined feeding in Olympicetus spp., and suction feeding in Simocetus. Finally, body size estimates show that small to moderately large taxa are present in Simocetidae, with the largest taxon represented by Simocetidae gen. et sp. A with an estimated body length of 3 m, which places it as the largest known simocetid, and amongst the largest Oligocene odontocetes. The new specimens described here add to a growing list of Oligocene marine tetrapods from the North Pacific, further promoting faunistic comparisons across other contemporaneous and younger assemblages, that will allow for an improved understanding of the evolution of marine faunas in the region.


Assuntos
Cetáceos , Classificação , Fósseis , Baleias , Washington , Baleias/anatomia & histologia , Baleias/classificação , Cetáceos/anatomia & histologia , Cetáceos/classificação , Especificidade da Espécie , Fósseis/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Dente/anatomia & histologia
6.
Evol Dev ; 25(4-5): 257-273, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259250

RESUMO

Ontogeny plays a key role in the evolution of organisms, as changes during the complex processes of development can allow for new traits to arise. Identifying changes in ontogenetic allometry-the relationship between skull shape and size during growth-can reveal the processes underlying major evolutionary transformations. Baleen whales (Mysticeti, Cetacea) underwent major morphological changes in transitioning from their ancestral raptorial feeding mode to the three specialized filter-feeding modes observed in extant taxa. Heterochronic processes have been implicated in the evolution of these feeding modes, and their associated specialized cranial morphologies, but their role has never been tested with quantitative data. Here, we quantified skull shapes ontogeny and reconstructed ancestral allometric trajectories using 3D geometric morphometrics and phylogenetic comparative methods on sample representing modern mysticetes diversity. Our results demonstrate that Mysticeti, while having a common developmental trajectory, present distinct cranial shapes from early in their ontogeny corresponding to their different feeding ecologies. Size is the main driver of shape disparity across mysticetes. Disparate heterochronic processes are evident in the evolution of the group: skim feeders present accelerated growth relative to the ancestral nodes, while Balaenopteridae have overall slower growth, or pedomorphosis. Gray whales are the only taxon with a relatively faster rate of growth in this group, which might be connected to its unique benthic feeding strategy. Reconstructed ancestral allometries and related skull shapes indicate that extinct taxa used less specialized filter-feeding modes, a finding broadly in line with the available fossil evidence.


Assuntos
Evolução Biológica , Crânio , Animais , Filogenia , Crânio/anatomia & histologia , Baleias/anatomia & histologia , Cabeça
7.
Conserv Biol ; 37(5): e14090, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246556

RESUMO

To understand the scope and scale of the loss of biodiversity, tools are required that can be applied in a standardized manner to all species globally, spanning realms from land to the open ocean. We used data from the International Union for the Conservation of Nature Red List to provide a synthesis of the conservation status and extinction risk of cetaceans. One in 4 cetacean species (26% of 92 species) was threatened with extinction (i.e., critically endangered, endangered, or vulnerable) and 11% were near threatened. Ten percent of cetacean species were data deficient, and we predicted that 2-3 of these species may also be threatened. The proportion of threatened cetaceans has increased: 15% in 1991, 19% in 2008, and 26% in 2021. The assessed conservation status of 20% of species has worsened from 2008 to 2021, and only 3 moved into categories of lesser threat. Cetacean species with small geographic ranges were more likely to be listed as threatened than those with large ranges, and those that occur in freshwater (100% of species) and coastal (60% of species) habitats were under the greatest threat. Analysis of odontocete species distributions revealed a global hotspot of threatened small cetaceans in Southeast Asia, in an area encompassing the Coral Triangle and extending through nearshore waters of the Bay of Bengal, northern Australia, and Papua New Guinea and into the coastal waters of China. Improved management of fisheries to limit overfishing and reduce bycatch is urgently needed to avoid extinctions or further declines, especially in coastal areas of Asia, Africa, and South America.


Estado en la lista roja y riesgo de extinción de las ballenas, delfines y marsopas del mundo Resumen Para comprender el alcance y la escala de la pérdida de biodiversidad, se necesitan herramientas que puedan aplicarse de forma estandarizada a todas las especies a nivel mundial y que abarquen todos los ámbitos desde la tierra hasta el océano. Utilizamos datos de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza para proporcionar una síntesis del estado de conservación y el riesgo de extinción de los cetáceos. Una de cada 4 especies de cetáceos (26% de 92 especies) se encuentra amenazada (es decir, en peligro crítico, en peligro o vulnerable) y el 11% de las especies está clasificado como casi amenazada. El 10% de las especies de cetáceos carecía de datos, por lo que predijimos que 2-3 de estas especies también podrían estar amenazadas. La proporción de cetáceos amenazados ha aumentado: 15% en 1991, 19% en 2008 y 26% en 2021. El estado de conservación evaluado del 20% de las especies ha empeorado de 2008 a 2021, pues sólo 3 pasaron a categorías de menor amenaza. Las especies de cetáceos con áreas de distribución geográficas pequeñas tenían más probabilidades de ser catalogadas como amenazadas que aquellas con áreas de distribución extensas, y aquellas que ocurren en hábitats de agua dulce (100% de las especies) y costeros (60% de las especies) eran las que se encontraban bajo mayor amenaza. La superposición de los mapas de distribución de las especies reveló la existencia de puntos calientes de pequeños cetáceos amenazados en el sudeste asiático y en una zona que abarca el Triángulo de Coral y se extiende por las aguas cercanas a la costa de la Bahía de Bengala, el norte de Australia, Papúa Nueva Guinea y las aguas costeras de China. Urge mejorar la gestión de las pesquerías para limitar la sobrepesca y reducir la captura accesoria con el fin de evitar extinciones o mayores descensos, especialmente en las zonas costeras de Asia, África y Sudamérica.


Assuntos
Golfinhos , Toninhas , Animais , Conservação dos Recursos Naturais , Extinção Biológica , Baleias , Pesqueiros , Biodiversidade , Espécies em Perigo de Extinção
8.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220086, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37183892

RESUMO

Skulls of living whales and dolphins (cetaceans) are telescoped-bones of the skull roof are overlapped by expanded facial bones and/or anteriorly extended occipital bones. Evolution of the underlying skull roof (calvarium), which lies between the telescoped regions, is relatively unstudied. We explore the evolution and development of the calvarium of toothed whales (odontocetes) by integrating fetal data with Oligocene odontocete fossils from North America, including eight neonatal and juvenile skulls of Olympicetus†. We identified two potential synapomorphies of crown Cetacea: contact of interparietals with frontals, and a single anterior median interparietal (AMI) element. Within Odontoceti, loss of contact between the parietals diagnoses the clade including Delphinida, Ziphiidae and Platanistidae (=Synrhina). Delphinida is characterized by a greatly enlarged interparietal. New fetal series of delphinoids reveal a consistent developmental pattern with three elements: the AMI and bilateral posterior interparietals (PIs). The PIs most resemble the medial interparietal elements of terrestrial artiodactyls, suggesting that the AMI of cetaceans could be a unique ossification. More broadly, the paucity of conserved anatomical relationships of the interparietals, as well as the fact that the elements often do not coalesce into a single bone, demonstrates that assessing homology of the interparietals across mammals remains challenging. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Assuntos
Artiodáctilos , Golfinhos , Animais , Evolução Biológica , Crânio , Baleias , Mamíferos , Filogenia
9.
R Soc Open Sci ; 9(11): 221353, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425522

RESUMO

Baleen whales have lost their functional teeth and begun to use their baleen plates to feed on small prey. Modern baleen whales exhibit different types of feeding strategies, such as lunging, skimming and so on. The evolution of feeding strategy in the Chaeomysticeti is an important step in considering niche partitioning and diversification, feeding efficiency and gigantism, and evolution and extinction. This study analyses the rostrum morphology to test the hypothesis that specific rostral morphologies facilitate special feeding strategies, using modern species and their observed feeding strategies. By this means, the convergence of rostral morphology can be recognized in the closest groups in the morphospace. As a result, the two linages (Balaenidae and Caperea marginata) are recognized to have convergent rostral morphology. In addition, an early member of the Chaeomysticeti, Yamatocetus canaliculatus, and most fossil species are plotted in or close to the cluster of lunge feeders. The original feeding strategy of the Chaeomysticeti could be more similar to lunge feeding than to skim feeding. Fossil relatives of the two linages showing transitional conditions indicate that they shifted to skim feeding independently. The evolution of the feeding strategy of the Chaeomysticeti is possibly more complex than that was thought.

10.
Ecol Evol ; 12(11): e9513, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36415876

RESUMO

Group living is a critical component of the ecology of social animals such as delphinids. In many studies on these animals, groups represent sampling units that form the basis of the collection and analysis of data on their abundance, behavior, and social structure. Nevertheless, defining what constitutes a group has proven problematic. There is inconsistency in the terms and criteria used and many definitions lack biological justification. We conducted a literature review and an online expert survey to assess various terms (group, school, party, and pod), and their definitions as applied to delphinids to identify issues to ultimately make recommendations. Of 707 studies analyzed, 325 explicitly defined one or more terms, providing 344 definitions. Additionally, 192 definitions were obtained from the survey. Among these definitions, group was the most common term used (review: 286 definitions, 83.1%; survey: 69 definitions, 35.9%) and the most familiar to the survey respondents (73 respondents, 100.0%). In definitions of group, spatial proximity was the most used criterion (review: 200 definitions, 71.2%; survey: 53 definitions, 81.5%) followed by behavior (review: 176 definitions, 62.6%; survey: 38 definitions, 58.5%). The terms and criteria used to define delphinid groups vary considerably. Rather than proposing a single formal definition, we instead recommend that the term group and spatial proximity criteria be used to define sampling units of individuals observed in the field. Furthermore, we propose a process for formulating definitions that involves analyzing interindividual distances to determine naturally occurring patterns that are indicative of group membership. Although this process is based principally on the spatial proximity of individuals, it could also incorporate the behavior of group members by evaluating the influence of behavior on interindividual distances. Such a process produces definitions that are biologically meaningful and compatible across studies and populations, thus increasing our ability to draw strong conclusions about group living in delphinids.

11.
Vet Res Commun ; 46(4): 1303-1309, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149569

RESUMO

On 25 August 2021, a single female sperm whale (Physeter macrocephalus) was found stranded dead in Playa Tuxpan, Veracruz, Mexico. Skin biopsies were obtained and screened for the detection of various potentially pathogenic bacterial genera, using conventional polymerase chain reaction and sequencing of the positive amplicons. We recorded, for the first time, the presence of Vibrio paraheamolyticus in skin samples from P. macrocephalus in the Gulf of Mexico. Additionally, we discuss 29 records reporting strandings of sperm whales from six states of the Mexican Republic. Most of the records are concentrated in the Pacific Ocean. Our findings increase the inventory of bacteria reported in P. macrocephalus worldwide, summarising the knowledge of stranding events in sperm whale populations in Mexico.


Assuntos
Cachalote , Vibrio , Feminino , Animais , Cachalote/microbiologia , México , Meio Ambiente
12.
Proc Biol Sci ; 289(1982): 20221214, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100016

RESUMO

Amniotes have been a major component of marine trophic chains from the beginning of the Triassic to present day, with hundreds of species. However, inferences of their (palaeo)ecology have mostly been qualitative, making it difficult to track how dietary niches have changed through time and across clades. Here, we tackle this issue by applying a novel geometric morphometric protocol to three-dimensional models of tooth crowns across a wide range of raptorial marine amniotes. Our results highlight the phenomenon of dental simplification and widespread convergence in marine amniotes, limiting the range of tooth crown morphologies. Importantly, we quantitatively demonstrate that tooth crown shape and size are strongly associated with diet, whereas crown surface complexity is not. The maximal range of tooth shapes in both mammals and reptiles is seen in medium-sized taxa; large crowns are simple and restricted to a fraction of the morphospace. We recognize four principal raptorial guilds within toothed marine amniotes (durophages, generalists, flesh cutters and flesh piercers). Moreover, even though all these feeding guilds have been convergently colonized over the last 200 Myr, a series of dental morphologies are unique to the Mesozoic period, probably reflecting a distinct ecosystem structure.


Assuntos
Ecossistema , Dente , Animais , Evolução Biológica , Comportamento Alimentar , Mamíferos , Répteis , Dente/anatomia & histologia
13.
Proc Biol Sci ; 289(1980): 20221090, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35919995

RESUMO

Extreme asymmetry of the skull is one of the most distinctive traits that characterizes toothed whales (Odontoceti, Cetacea). The origin and function of cranial asymmetry are connected to the evolution of echolocation, the ability to use high-frequency sounds to navigate the surrounding environment. Although this novel phenotype must arise through changes in cranial development, the ontogeny of cetacean asymmetry has never been investigated. Here we use three-dimensional geometric morphometrics to quantify the changes in degree of asymmetry and skull shape during prenatal and postnatal ontogeny for five genera spanning odontocete diversity (oceanic dolphins, porpoises and beluga). Asymmetry in early ontogeny starts low and tracks phylogenetic relatedness of taxa. Distantly related taxa that share aspects of their ecology overwrite these initial differences via heterochronic shifts, ultimately converging on comparable high levels of skull asymmetry. Porpoises maintain low levels of asymmetry into maturity and present a decelerated rate of growth, probably retained from the ancestral condition. Ancestral state reconstruction of allometric trajectories demonstrates that both paedomorphism and peramorphism contribute to cranial shape diversity across odontocetes. This study provides a striking example of how divergent developmental pathways can produce convergent ecological adaptations, even for some of the most unusual phenotypes exhibited among vertebrates.


Assuntos
Ecolocação , Toninhas , Animais , Evolução Biológica , Filogenia , Crânio , Baleias
14.
Curr Biol ; 32(15): 3436-3442.e2, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882234

RESUMO

Episodic memory involves the conscious recollection of personally experienced events, which has often been argued to be a uniquely human ability.1-5 However, evidence for conscious episodic recall in humans is centered around language-based reports. With no agreed upon non-linguistic behavioral makers of consciousness,6 episodic-like memory7 therefore represents the behavioral characteristics of human episodic memory, in the absence of evidence for subjective experience during recall. Here, we provide compelling evidence for episodic-like memory in common bottlenose dolphins (Tursiops truncatus), based on the incidental encoding and unexpected question paradigm.8 This methodology aims to capture the incidental encoding characteristic of human episodic memory, in that when we recall an experience, we remember information that was trivial at the time of encoding, but was encoded automatically.9 We show that dolphins are able to use incidentally encoded spatial ("where") and social ("who") information to solve an unexpected memory task, using only a single test trial per test type, which ensured that the dolphins did not have the opportunity to semantically learn "rules" to pass the test. All participating dolphins made correct choices in both the "where" and "who" tests. These results suggest that dolphins are capable of encoding, recalling, and accessing incidental information within remembered events, which is an ability indicative of episodic memory in humans. We argue that the complex socio-ecological background of dolphins may have selected for the ability to recall both spatial and social information in an episodic-like manner.


Assuntos
Golfinho Nariz-de-Garrafa , Golfinhos Comuns , Memória Episódica , Animais , Estado de Consciência , Humanos , Rememoração Mental
15.
PeerJ ; 10: e13251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602890

RESUMO

The Swiss Upper Marine Molasse (OMM) documents a transgression event dated to around 21 to 17 million years in which dolphin and other vertebrate remains have been reported. We revised the whole cetacean (whales and dolphins) OMM assemblage available in main collections, focusing on the identification and interpretation of periotics (bone that contains the inner ear). Periotics are rare, but they provide the richest taxonomic information in the sample and hint to environmental associations. Micro-computerized tomography allowed the reconstruction of bony labyrinths for comparisons and environmental interpretations. Three families are represented by periotics: Kentriodontidae, Squalodelphinidae and Physeteridae. The cetacean taxonomic composition of the Swiss OMM reinforces biogeographical patterns reported for the Mediterranean and Paratethys during the Burdigalian at a regional scale and the Calvert cetacean fauna of the northwest Atlantic at oceanic scale.


Assuntos
Golfinhos , Animais , Suíça , Melaço , Baleias
16.
Proc Natl Acad Sci U S A ; 119(13): e2114932119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312354

RESUMO

SignificanceAcoustic signals travel efficiently in the marine environment, allowing soniferous predators and prey to eavesdrop on each other. Our results with four cetacean species indicate that they use acoustic information to assess predation risk and have evolved mechanisms to reduce predation risk by ceasing foraging. Species that more readily gave up foraging in response to predatory sounds of killer whales also decreased foraging more during 1- to 4-kHz sonar exposures, indicating that species exhibiting costly antipredator responses also have stronger behavioral reactions to anthropogenic noise. This advance in our understanding of the drivers of disturbance helps us to predict what species and habitats are likely to be most severely impacted by underwater noise pollution in oceans undergoing increasing anthropogenic activities.


Assuntos
Ruído , Orca , Animais , Medo , Comportamento Predatório , Som
17.
Dev Comp Immunol ; 132: 104398, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35307479

RESUMO

The low diversity in marine mammal major histocompatibility complex (MHC) appears to support the hypothesis of reduced pathogen selective pressure in aquatic systems compared to terrestrial environments. However, the lack of characterization of the aquatic and evolutionarily distant Sirenia precludes drawing more generalized conclusions. Therefore, we aimed to characterize the MHC DQB diversity of two manatee species and compare it with those reported for marine mammals. Our results identified 12 and 6 alleles in T. inunguis and T. manatus, respectively. Alleles show high rates of nonsynonymous substitutions, suggesting loci are evolving under positive selection. Among aquatic mammals, Pinnipeda DQB had smaller numbers of alleles, higher synonymous substitution rate, and a dN/dS ratio closer to 1, suggesting it may be evolving under more relaxed selection compared to fully aquatic mammals. This contradicts one of the predictions of the hypothesis that aquatic environments impose reduced pathogen pressure to mammalian immune system. These results suggest that the unique evolutionary trajectories of mammalian MHC may impose challenges in drawing ecoevolutionary conclusions from comparisons across distant vertebrate lineages.


Assuntos
Complexo Principal de Histocompatibilidade , Trichechus , Alelos , Animais , Complexo Principal de Histocompatibilidade/genética , Mamíferos/genética , Filogenia , Seleção Genética , Sirênios
18.
Animals (Basel) ; 13(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36611689

RESUMO

We investigated the relationship between age and body length, and age at sexual maturity of Physeter macrocephalus individuals stranded along the Italian coast. Our molecular analysis shows that all our samples belong to the C.001.002 haplotype, shared between Atlantic and Mediterranean populations. We show that males attain sexual maturity at 10 years, similar to those from other marine areas. However, considering the same body length class, Mediterranean males are older than Atlantic ones. Our finding of a Mediterranean pregnant female of only 6.5 m in length and an assessed age of 24-26 years is particularly noteworthy, considering that females reach sexual maturity at about 9 years and 9 m of total length in other regions. Comparing our results with the literature data, we highlight the positive correlation between lifespan, adult body length and weight of males from the Mediterranean and Atlantic Ocean. Regardless of whether the relatively small size of Mediterranean specimens is a consequence of an inbreeding depression or an adaptation to less favorable trophic conditions, we recommend to closely monitor this population from a conservation perspective. In fact, its low genetic diversity likely corresponds to a relatively limited ability to respond to environmental changes compared with other populations.

19.
Rev Neurosci ; 33(4): 439-465, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-34534428

RESUMO

The present review assesses the potential neural impact of impoverished, captive environments on large-brained mammals, with a focus on elephants and cetaceans. These species share several characteristics, including being large, wide-ranging, long-lived, cognitively sophisticated, highly social, and large-brained mammals. Although the impact of the captive environment on physical and behavioral health has been well-documented, relatively little attention has been paid to the brain itself. Here, we explore the potential neural consequences of living in captive environments, with a focus on three levels: (1) The effects of environmental impoverishment/enrichment on the brain, emphasizing the negative neural consequences of the captive/impoverished environment; (2) the neural consequences of stress on the brain, with an emphasis on corticolimbic structures; and (3) the neural underpinnings of stereotypies, often observed in captive animals, underscoring dysregulation of the basal ganglia and associated circuitry. To this end, we provide a substantive hypothesis about the negative impact of captivity on the brains of large mammals (e.g., cetaceans and elephants) and how these neural consequences are related to documented evidence for compromised physical and psychological well-being.


Assuntos
Elefantes , Animais , Atenção , Encéfalo/fisiologia , Elefantes/fisiologia , Elefantes/psicologia , Humanos
20.
Curr Biol ; 32(1): 248-255.e2, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34813730

RESUMO

Pachyosteosclerosis-a condition that creates dense, bulky bones-often characterizes the early evolution of secondarily aquatic tetrapods like whales and dolphins1-3 but then usually fades away as swimming efficiency increases.4 Here, we document a remarkable reversal of this pattern, namely the convergent re-emergence of bone densification in Miocene seals, dolphins, and whales from the epicontinental Paratethys Sea of eastern Europe and central Asia. This phenomenon was driven by imbalanced remodeling and inhibited resorption of primary trabeculae and coincided with hypersaline conditions-the Badenian salinity crisis-that affected the Central Paratethys between 13.8 and 13.4 Ma.5 Dense bones acting as ballast would have facilitated efficient swimming in the denser and more buoyant water and hence were likely adaptive in this setting. From the Central Paratethys, pachyosteosclerosis subsequently spread eastward, where it became a defining feature of the endemic late Miocene whale assemblage.6,7.


Assuntos
Focas Verdadeiras , Baleias , Animais , Osso e Ossos , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...